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Abstract 
Reconstructing boundaries along material interfaces from volume fractions is a difficult problem, 
especially because the under-resolved nature of the input data allows for many correct interpretations.  
Worse, algorithms widely accepted as appropriate for simulation are inappropriate for visualization.  In 
this paper, we describe a new algorithm that is specifically intended for reconstructing material interfaces 
for visualization and analysis requirements.  The algorithm performs well with respect to memory 
footprint and execution time, has desirable properties in various accuracy metrics, and also produces 
smooth surfaces with few artifacts, even when faced with more than two materials per cell. 
 
Categories and Subject Descriptors: I.3.6 [Computer Graphics] Methodology and Technologies 

 
1 Introduction 

Many important classes of computer simulations of 
physical phenomena require support for “materials,” i.e. 
discrete regions of space with different physical properties. 
For example, a simulation of tidal waves needs to partition 
space into water and air, and a simulation of an automobile 
accident must model glass, metal, and rubber.  There are 
two approaches to supporting materials on a computational 
mesh: Lagrangian (where each cell contains exactly one 
material for the entire simulation) and Eulerian (where the 
materials are allowed to flow through the mesh).  Although 
the Lagrangian approach is simpler to implement, the 
Eulerian approach is often used because of its flexibility.  
The Eulerian approach is ideal for computations requiring a 
static mesh while materials move, for materials that bend 
and twist so significantly that they can’t be represented 
easily with normal mesh elements, or simply to model 
materials at a higher resolution than the mesh to maintain 
accuracy.  The result is that cells in the computational mesh 
will be “mixed,” i.e. containing two or more materials. 

   
Figure 1: Original problem materials (left) and the volume 
fractions of the blue material in each cell (right). 

Material information is stored on a per-cell basis, with a 
scalar for each material representing the “volume fraction” 
(VF) for that material, i.e. the percent of the cell occupied 
by that material. Figure 1 shows an example of three 
materials in two-dimensional space along with a nine-cell 
computational grid, as well as the VFs in each cell for the 
upper-most (blue) material.  In this example, the four cells 
with a blue VF of 1.0 are “clean,” containing only the blue 

material, and the three cells with a VF between 0 and 1 are 
mixed and should contain the interface of the blue material. 

There are multiple “correct” solutions and many criteria 
for a good reconstruction: Does it honor the volume 
fractions?  Does it place materials from neighboring cells 
next to each other?  Does it create large discontinuities?   
Although simulations reconstruct interfaces themselves, 
their primary concerns include advecting materials through 
the mesh correctly or specific physical properties like 
conservation of mass, not visualization and analysis.  Their 
reconstructions often lead to inaccurate analysis and poor 
aesthetics. In this paper, we introduce a new algorithm that 
is well suited for visualization and analysis. 

The rest of the paper is organized as follows.  In section 2, 
we describe previous work in this area.  Section 3 describes 
our new approach and variations therein.  In section 4, we 
perform a comparative evaluation with several other types 
of interface reconstruction techniques, and we present paths 
for future work and our conclusions in section 5.  
2 Previous work 

One of the first techniques for material interface 
reconstruction (MIR) is a method that uses tracking 
particles to define the interface [Ams66].  Later methods 
tracked interfaces using level set methods [OS88].  An early 
method for creating linear geometric material boundaries 
out of volume fractions arose in the simple line interface 
calculation (SLIC) [NW76] and volume-of-fluid (VOF) 
method [HN81].  SLIC and VOF are piecewise-
constant/stair-stepped algorithms, aligning material 
interface boundaries with one of the major coordinate axes.  
An improvement to these approaches came in the piecewise 
linear interface calculation (PLIC) [PY92], which loops 
over the materials in each cell, first choosing an orientation 
then finding the intersection position which results in the 
correct VF.  By supporting non-axis aligned orientations, 
PLIC removed one of the major obstacles to a more realistic 
reconstruction.  Modifications to the basic PLIC algorithm 
include the ordering of materials and method for calculating 
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interface orientations [AS07].  Again, these methods are 
largely concerned with not merely the reconstruction of the 
material interfaces but also the roles these interfaces play in 
simulation codes, such as tracking and propagating the 
surface following physical laws, and thus often neglect 
features important for visualization and analysis. 

Other algorithms have been devised which are more 
applicable for analysis and visualization.  One algorithm 
implemented in visualization programs is an isosurface 
algorithm, which creates surfaces based on interpolated 
volume fraction values, either on re-centered values or on a 
dual mesh.  [RBW99]  This approach generates smooth 
surfaces, but has serious flaws in supporting multiple 
materials.  Bonnell et al. describe an approach which 
remaps geometry into barycentric coordinate space, leading 
to more accurate reconstructions for more than two 
materials [BJH*00]. However, when faced with additional 
materials, the output has a high geometric complexity and 
the algorithm only applies to triangle/tetrahedral grids.  The 
algorithm described by [AGD*08] subdivides cells into a 
discretized grid and iteratively shifts material sub-voxels to 
minimize an energy function, generating good results with 
fixed error bounds.  However, the subdivision is expensive 
in output complexity and performance time.  Further, the 
output is restricted to generating axis-aligned boundary 
surfaces.  Another category of approaches could be 
described as multi-material marching cubes variants 
[WS03, BL03, HSS*97], but these approaches add too 
many constraints, such as requiring material choices to be 
made at each corner, or supporting intersections only at 
edge midpoints.  Finally, the algorithm described in this 
paper represents a significant extension to and analysis of 
the algorithm described in [Mer04], in particular adding an 
iterative step to improve accuracy and an analysis 
comparing its effectiveness to other algorithms. 
3 Algorithm description 

3.1 Core algorithm 

   
Figure 2: Volume fractions for each material (left) are 
averaged to the vertices of the mesh (right). 
The algorithm begins by averaging the material VFs to the 
mesh vertices.  This ultimately enables continuity since the 
algorithm depends on volume fractions along cell edges, 
and each edge will now have the same starting values, 
regardless of which adjacent cell we are reconstructing.  We 
illustrate each step of our algorithm with an example where 
we study the reconstruction on the central cell of a nine-cell 
grid with three materials: blue, red, and yellow.  The first 
step, seen in Figure 2, demonstrates the averaging step.  

Our algorithm deals with multiple materials in a cell by 

adding each material one at a time. Each cell is initialized 
with a single material, then, when adding each successive 
material, it splits out portions of the cell to belong to the 
new material.  Figure 3 shows the first iteration in this 
process.  The center cell has been initialized to be yellow 
and we demonstrate how a second material (red) is added. 
This is done in two steps: evaluation and reconstruction.  
For the evaluation step, we focus on the two selected 
materials (red and yellow) and ignore all other materials 
(blue).  For each edge in the cell, we test to see if there is a 
location along the edge where the interpolated VFs of the 
materials are equal. In our example, the red and yellow 
materials’ interpolated VFs are equal near the top of the left 
edge, where both have a value of approximately 0.087, and 
near the middle of the bottom edge, where both have a 
value of approximately 0.336.   

    
Figure 3: Intersection points for red/yellow evaluation 
(left) and the clipped volumes (right). 

If an edge contains an intersection point, we split this edge 
into two new edges: yellow (for the new edge incident to 
the yellow-dominant vertex) and red (for the new edge 
incident to the red-dominant vertex).  After the edge splits, 
we perform the actual reconstruction.  In two dimensions, 
the output is made up of polygons, each containing a single 
material (red or yellow).  The vertices of a yellow triangle, 
for example, will consist of only yellow-dominant vertices 
or intersection points.  We have implemented two variants, 
one of which operates only on triangles and requires the 
input to be triangulated, and one which can input and output 
both triangles and quadrilaterals.  The rules for 
reconstruction are table-based and resemble a Marching 
cubes table for isosurfacing [LC87].  Further, when 
considering only two materials (as we have so far) the 
resemblance to isosurfacing extends to the entire algorithm.  
This includes ambiguities that may arise for cases where 
dominant nodes are diagonal from each other (e.g. red-
dominant upper left and lower right, yellow-dominant upper 
right and lower left).  We handle these ambiguities by 
choosing one material to span the middle and the other to 
get separated, again much like an isosurface algorithm.  

3.1.1 Three dimensional extension 
Our three dimensional case is similarly done by table, 

although we have again implemented two variants.  In the 
first variant, we must tetrahedralize the input and then 
group output vertices of the same material together, along 
with neighboring intersection points, into one or more 
tetrahedrons.  In the second variant, we leave the input cells 
whole and strive to reduce the number of output cells by 
grouping tetrahedrons together into pyramids, wedges, and 
hexahedrons when possible. We refer to this as the “zoo” 
variant since it uses the elements of the finite element zoo. 
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Once again like a Marching Cubes algorithm, we have 
worked out all 2n cases for each n-node primitive so that a 
simple table lookup determines the output shapes for each 
reconstruction step. To illustrate the difference between the 
tetrahedron and “zoo” variants, consider the case of a 
hexahedron that has four yellow dominant nodes in its top 
half and four red dominant nodes in its bottom half. The 
tetrahedral variant would need ten or more tetrahedrons to 
represent the reconstruction, while the zoo variant would do 
it with two hexahedrons. This fact has implications for 
surface smoothness we explore later. Note that three-
dimensional reconstruction introduces a new problem: as 
the faces of the original cell are being divided into triangles 
and quadrilaterals, it is important that the neighboring cell 
makes matching decisions regarding how it divides the 
same face. Otherwise, the output mesh connectivity will be 
incorrect. This potential problem is prevented through 
careful selection of the table entries and consistent indexing 
of shared cell edges.  See [VISIT2] for source code. 

3.1.2 Isosurfaces and equisurfaces 
For a two-material problem, the boundary between the 

reconstructed materials is indeed an isosurface of value 0.5.    
However, this boundary is not technically an isosurface.  
An isosurface is a surface of constant value.  Our surface is 
rather a surface where the volume fractions of two materials 
are equal.  When there are more than two materials, the 
value along the boundary will vary.  Figure 3 demonstrates 
this, as the boundary has interpolated VFs ranging from 
0.087 to 0.336. In recognition of this key difference from an 
isosurface, we refer to this surface as an “equi-surface.” 

3.1.3 Reincorporation of Additional Materials 

         
Figure 4: Evaluating the third (blue) material against the 
first (yellow) and second (red) materials. 

At this stage, we now have two output cells, one for each 
material visited. We take each of these cells and evaluate it 
against the next material (the blue one) as seen in Figure 4. 
To do so, note that we must have values at all nodes for the 
blue material as well, and as such must also interpolate VF 
values for our blue material to the new node locations. This 
is where the process repeats: we clip our yellow cell from 
the previous step into a blue and a yellow cell, and the red 
cell into a blue and a red cell. As mentioned, we have two 
variants of this clipping process: one which outputs two 
triangles for the red material in Figure 4, for example, and 
the other which outputs a single quadrilateral. 

Note that by construction, the edges of these two new blue 
material cells must meet each other at the exact same 
points.  This same phenomenon occurs at edges between 
cells, and for this reason this algorithm guarantees 
continuity for all material interfaces.  The results of the 
reconstruction are shown in Figure 5.  Note this algorithm is 
applicable to any cell type, although we depend on a table 

that covers the 2n intersection cases (for cells with n points). 

 
Figure 5: The final reconstruction for all three materials. 

3.2 Global iteration scheme 
As described in section 3.1, our algorithm makes use of 

volume fractions only implicitly, using them not as a hard 
criterion, but as input to a process which uses them as 
values to define geometric clipping planes.  However, there 
is still a direct correlation between the two: for example, a 
larger input volume fraction of a material will result in the 
generated volume for that material being larger.  We will 
explore the actual correspondence between input and output 
volume fractions in Section 4, but we will note here simply 
that the relationship is not necessarily a trivial linear one:  
as can even be seen in the example three-material diagrams 
above, there are many circumstances in which the input and 
output VFs are not an exact match. 

However, we can use this proportionality between input 
and output volume fractions to improve our scheme.  The 
process we use is one of a global iterative modification of 
the VFs used as input to the reconstruction.  Specifically: 
1. Initialize the reconstruction algorithm VF input values to 

the desired VFs (i.e. the VFs from the original data set). 
2. Perform the reconstruction using the current input VFs. 
3. Calculate the output VFs achieved by the reconstruction. 
4. For each material in each cell, modify the input VF by 

some percentage of the difference between the desired 
VF and the achieved output VF. 

5. Repeat steps #2, #3, and #4 until iteration stops. 

For example, suppose our data has a VF of 0.2 material A 
and 0.8 material B in some cell, but we achieve 0.1 and 0.9, 
respectively, after our first reconstruction.  With a 40% 
percentage used in step 4, we will modify these target VFs 
to be 0.24 and 0.76 and begin the next iteration. 

Note that because modified VF values are averaged from 
cells to nodes during the iteration, modifications to one cell 
will affect neighboring cells.  Therefore, this is not a local 
adjustment and it prevents a simple analytic solution in each 
cell, also removing guarantees of convergence.  However, 
this global aspect is necessary; without this connection 
between cells, connectivity and smoothness would be lost. 

In Step #4, the percentage of the VF difference used to 
modify the target VFs can be thought of as a damping 
factor: a larger value will approach the desired VF values 
more quickly, but as such can result in oscillations which 
prevent convergence at all.  We have found empirically that 
values between 10% and 40% generally approach the target 
VFs quickly while avoiding oscillations. Also, as 
convergence is not guaranteed, the scheme is most useful 
with the number of iterations specified manually.  We 
investigate these convergence properties in Section 4.5.1. 
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4 Evaluation 
In this section, we compare our algorithm against other 

algorithms, both visualization- and simulation-oriented.  
Each of the algorithms is implemented inside the VisIt 
visualization and analysis application [CBB*05], and we 
use these implementations for our comparisons.  These 
include a piecewise-linear interface construction (“PLIC”) 
algorithm, an implementation of the algorithm from 
Anderson et al. [AGD*08] (“Discrete”), and a volumetric 
variant of an isosurface algorithm (“Isovolume”).  For our 
technique which clips cells based on equi-surfaces, we 
show results using both reconstruction variants: one using 
the pure triangular/tetrahedral approach (“Equi-T”), and one 
using a the more complete selection of cell types from the 
finite element zoo (“Equi-Z”). The latter variant can utilize 
our global iteration scheme with a fixed number of 
iterations (e.g. “Equi-Z/i5” for five iterations).  Table 1 
summarizes the results of the comparative evaluation.  Code 
for the implementations in this paper, including the clipping 
variants, are available at the VisIt web site [VISIT2].  We 
explore these results in detail below in light of visualization 
and analysis requirements, including overall capabilities 
(4.1-4.4), accuracy (4.5-4.6), and performance (4.7-4.8). 

4.1 Mesh type support 
All algorithms compared here work in both two- and 

three-dimensions.  Furthermore, all work with regular, 
structured, or unstructured data sets, with the exception of 
the Discrete algorithm, which is limited to regular grids.  
We use all types of data sets below, using a two-pronged 
approach to evaluate these algorithms: use well-defined 
synthetic test data to examine critical algorithmic features 
on a small scale, and larger simulation data to evaluate the 
methods in a real-world setting.  

4.2 Geometric connectivity 

For many geometric algorithms, good cell connectivity is 
required – this is why unstructured meshes are generally not 
sets of independent cells, but instead use data structures that 
share points among neighboring cells. Visualization and 
analysis examples requiring good connectivity include 
calculating external faces of a data set or algorithms which 
utilize the set of cells adjacent to a point.  Not every 
interface reconstruction technique is inherently capable of 
generating correct connectivity.   

For example, a standard PLIC algorithm generates an 
interface in each cell independently of its neighbors, and the 
intersection point between adjacent cells will not match up.  
This means that generating a closed surface without 
duplicate geometry is impossible without a complex 
algorithm which can split the reconstructed geometry many 

extra times.  See Figure 6 for an example.  In practice, this 
is a major liability for using PLIC style reconstruction for 
the many analysis algorithms requiring a well-defined 
surface. However, for the purpose of the fairest analysis of 
PLIC algorithms, we implemented a duplicate surface 
geometry removal algorithm, which allows us take 
measurements based on the ideal surface theoretically 
achievable with PLIC-style reconstruction. 

 
Figure 6: (a) Volumetric PLIC reconstruction. (b) Surface-
only PLIC reconstruction leaves holes. (c) Generating 
surfaces from volumetric reconstructions leave duplicate 
geometry.  (d) An ideal result has sharp angles and requires 
additional expense to generate.  Duplicate partial surface 
removal (d) is not a standard part of PLIC reconstructions, 
we implemented it for the comparisons in this paper. 

The Discrete algorithm quantizes space into sub-voxels.  
As such, good connectivity is somewhat straightforward in 
that the edges or faces between sub-voxels with differing 
materials define the interface, but the connectivity is limited 
to only axis-aligned geometry (like a rectilinear grid), 
imitating some weaknesses of a SLIC algorithm. 

A standard isosurface based approach that creates only 
lines in two dimensions and surfaces in three dimensions 
cannot be used for much analysis other than generating 
images; to perform analysis on the reconstructed result 
requires a more complex volumetric algorithm.  And, like a 
normal isosurface algorithm, this type of reconstruction can 
easily generate good connectivity between adjacent cells.  
However, a standard isovolume algorithm requires one pass 
for each material, creating volumes at the 50% iso-level.  
This is not conducive to generating connectivity between 
the materials occupying a single cell, since each material’s 
geometry is generated in isolation.  In a two-material case 
this could be remedied, as the 50% levels happen to match 
up, but in general this is not possible – see the multi-
material support section (4.3) below for more details. 

As described in Section 3, our algorithm shares some 
similarities with an isovolume algorithm in that adjacent 
cells will naturally share intersection points.  However, our 
approach also solves the inter-material connectivity 
problem: it does not use a fixed value, but instead defines a 
single point of intersection between each pair of materials.  
By recursing through the materials in a pairwise evaluation, 
this results in even the many-material case having 
inherently correct connectivity across cells and materials. 

 PLIC Discrete Isovolume-Z Equi-T Equi-Z Equi-Z/iterative 
4.1 Mesh Type Support all rectilinear only all all all all 
4.2 Geometric Connectivity no yes (axis-aligned) no yes yes yes 
4.3 Multi Material Support yes (sensitive) yes no yes yes yes 
4.4 Smooth, Low-Artifact Output no no yes partial yes yes 
4.5 Volume Accuracy yes (exact) yes (bounded) no no no yes (not guaranteed) 
4.6 Surface Accuracy no no yes yes yes yes 
4.7 Memory Complexity  moderate poor excellent moderate  excellent excellent  
4.8 Runtime Performance  poor poor moderate excellent  excellent moderate  

Table 1: Summary of comparative evaluation of reconstruction algorithms. 
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4.3 Multi-material support 

 
Figure 7: Thin-shell torus test data set.  Close-up of 
reconstruction using (a) PLIC (b) Discrete (c) Isovolume 
(d) Equi-T (e) Equi-Z (f) Equi-Z/i20. 

In general, material-supporting simulation codes operate 
on many materials, and so correctly supporting multiple 
materials within a single cell is a key requirement for 
correctness in a reconstruction algorithm.  Failure can take 
the form of a total inability to handle more than two 
materials in one cell to a gross shape mischaracterization.   
To explore this capability, we use the “Torus” data set.  
This is a three-material data set, where an inner circle of the 
first material is surrounded by a thin toroidal shell of a 
second material, in turn surrounded by a third material as 
background.  This is also useful for studying the algorithms 
under low-volume fraction conditions.  For example, Figure 
7 shows a close-up from the results of this data set 
reconstructed by each algorithm.  The PLIC algorithm must 
reconstruct cells working from the outside-in, which means 
it can potentially get the material ordering incorrect in cases 
with three or more materials; this has occurred in some 
cells, breaking any chance at a complete shell.  The Discrete 
algorithm tends to group pieces of materials together, 
resulting here in uneven thickness.  The Isovolume 
approach misses the thin material entirely, leaving a hole 
due to its lack of three-material support.  Without iteration, 
our new algorithm misses the thin material as well, but does 
not leave a hole.  When several iterations are added, our 
algorithm successfully reconstructs the thin shell, leaving it 
smoothly connected through the entire 360°. 

4.4 Smoothness and physical realism 
As previously mentioned, the material interface problem 

is under-constrained. A reconstruction algorithm is free to 
choose any surface within the cell as long as it reflects the 
volume fractions.  From a visualization standpoint, the 
choice of surface within a cell is more than aesthetics; if a 
jagged edge or lumpy surface is used when a smooth edge 
or flat surface would have met the requirements imposed by 
the volume fractions, then the reconstruction algorithm has 
introduced artifacts and assumed information which did not 
exist in the data.  These artifacts can be distracting, 
physically unrealistic, or even misleading.  Thus, in the 
absence of extra information, smooth or straight surfaces 
are desirable, as they introduce the least new information. 

Though it does manifest in some analysis calculations (such 
as surface area, which we explore in Section 4.6), this form 
of realism is hard to quantify.  However, it can be 
subjectively apparent.  For example, in Figure 7(f), the 
ability of our new algorithm to correctly generate a thin 
shell, and particularly to do so with a smooth continuous 
interface, is a strong example of its realism and minimal 
introduction of artifacts compared to other algorithms. 

 
Figure 8: Unstructured mesh ovoid reconstruction using 
(a) PLIC (b) Isovolume (c) Equi-T (d) Equi-Z/i5. 

Figure 8 explores these artifacts in three dimensions with 
a deformed ovoid material in an unstructured grid.  The 
Discrete algorithm does not function on unstructured grids, 
so we have not evaluated it here, but we note that all angles 
in this algorithm will be 90 degrees, the worst possible.   
Note again the sharp surface irregularities when using a 
PLIC algorithm; these will be present on most nontrivial 
problems.  Isovolume is very smooth, but it achieves this 
with a loss in volume fraction accuracy.  The results from 
our new algorithm highlight the importance of the clipping 
variant: when element types are limited to tetrahedral cells, 
it still exhibits surface artifacts (though less prominent than 
PLIC).  Allowed the full complement of primitive types, it 
achieves results subjectively as artifact-free as Isovolume as 
well as a more accurate (slightly larger) volume.   

Figure 9 shows a hyper velocity impact of a large particle 
upon several layers of shielding from the ALE3D 
unstructured grid simulation code [ALE3D], decomposed 
over 64 parallel computational domains. At this late time 
step, the materials have become twisted and stretched under 
high pressure, like turbulent fluids mixing.  In panels (c) 
through (f) we see a close zoom of the highlighted region to 
examine fine scale details of the reconstruction algorithms.  
Of course, the “correct” reconstruction is ill-defined, 
although the PLIC algorithm is guaranteed to faithfully 
represent each material in a given cell.  However, the PLIC 
algorithm introduces many jagged edges, creating sharp 
features not implied by the data. Further, the Isovolume 
algorithm creates large holes near the multi-material areas.  
Our new algorithm produces very smooth results, though 
without iteration it can miss many small pieces of materials. 

Figure 10 shows “Rect3D”, a three dimensional regular 
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grid data set comprising eight nested sphere materials, four 
of which are visible on the outside faces as shown.  We 
expect perfect circular boundaries on these four material 
spheres where they intersect the planar faces of the cube. 
The PLIC algorithm again shows discontinuities at cell 
boundaries. The Discrete algorithm results contain random 
noise, even after long periods of iteration, and its realism at 
material boundaries is limited by the quantization factor.  
Isovolume generates smooth results but lacks inter-material 
connectivity.  Our new algorithm (when not restricted to 
tetrahedral cells) generates smooth results and cohesive 
external surfaces, both without and with iteration. 

 
Figure 9: (a) Unstructured dataset from ALE3D simulation 
showing material velocities. (b) Close-up of zoom region 
showing velocities.  Reconstructions shown in zoom region  
are (c) PLIC, (d) Isovolume, (e) Equi-Z, (f) Equi-Z/i30. 

4.5 Volume fraction accuracy 
One metric is most often selected as foremost in 

importance in interface reconstruction algorithms: their 
ability to consistently reproduce the input volume fractions 
as the correct volume in the output geometry for each cell.  
While this capability often comes at the cost of others, the 
degree to which the algorithms honor volume fractions is 
nonetheless a useful metric, and so we examine it here. 

 
Figure 10:  “Rect3D” Regular grid data set of nested 
spheres reconstructed with (a) PLIC (b) Discrete/10sec, (c) 
Discrete/60sec, (d) Isovolume, (e) Equi-Z, (f) Equi-Z/i5. 

For an initial study of volume fraction accuracy, we utilize 
a straightforward 2D “Linear” test data sequence, a two-
material data set where a single-slope continuous linear 
interface divides the entire problem, intersecting the central 
cell of a small grid over a full range of slopes and volume 
fractions (35 data sets in total).  The results over this full 
sequence of data are shown in Table 2.  The PLIC algorithm 
is obviously very strong, with error on the order of single-
precision floating point limits.  The Discrete approach has 
fixed error bounds depending on the chosen quantization 
factor (15x15 here).    As expected for a two material mixed 
cell case, the Isovolume approach and our new algorithm 
perform identically on this metric, with maximum errors of 
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2.3% and a median error of 0.13%.  Even with only two 
iterations, our new algorithm improves even more, with 
error dropping by about half, to a maximum of 1.0% and a 
median of 0.072%.  When our algorithm is restricted to 
triangular output (with no iteration), it performs the worst, 
with much larger errors (1.3% median and 3.4% max), 
showing the importance of the approach to clipping. 
 PLIC Discrete Isovol Equi-T Equi-Z Equi-Z/i2 
Median 7.1e-7 2.4e-3 1.3e-3 1.3e-2 1.3e-3 7.2e-4 
Maximum  1.6e-6 4.3e-3 2.3e-2 3.4e-2 2.3e-2 1.0e-2 
Table 2: Volume fraction reconstruction error in the 
central cell of the "Linear" data set sequence. 

 
Figure 11: Close zoom of a blue circle against a green 

background material reconstructed using (a) PLIC (b) 
Discrete (c) Isovolume (d) Equi-T (e) Equi-Z (f) Equi-Z/i10. 

We also use a “Circle” data sequence to examine the 
behavior on ensemble data with nonlinear boundaries.  This 
is a two-material data set, where a unit circle of one 
material is overlaid on a background material.  This is a 
sequence of data sets of varying resolution, ranging from a 
10x10 to a 50x50 structured grid, and can be used to study 
the convergence properties of the algorithms under 
increasing resolution.  Figure 11 shows a close-up of the 
reconstruction of this dataset for each algorithm. 

 
Figure 12: Area of a unit circle material sampled onto a 
grid as reconstructed by each algorithm for a sequence of 
increasing resolutions. The correct answer is !.  

As the data represents a unit circle, it has a total area over 
all cells of ! at any resolution.  The area achieved by each 
algorithm is shown in Figure 12.  As expected, PLIC is 
accurate with this metric, the Discrete algorithm has fixed 
error bounds, and Isovolume and our new method without 
iteration perform similarly as this is a two-material case.  

Note that all algorithms do exhibit asymptotic convergence 
to the correct volume fraction answer under increasing 
resolution.  The key feature to note here is the pronounced 
effect our iteration scheme has on the volume fraction 
accuracy; errors on the ensemble are noticeably improved 
compared to what was achieved without iteration.  

4.5.1 Volume fraction convergence 

 
Figure 13: Relative error of material volume on the “50x50 
Circle” test data set for various convergence parameters in 
the Equi-Z/iterative algorithm. 

In Figure 13 we investigate the convergence properties of 
the Equi-Z algorithm under iteration on the Circle data set.  
This test examines the summed error contributions over all 
reconstructed cells.  We see the combined relative error is 
on the order of 10-3, and with iteration generally improves 
by two orders of magnitude to 10-5.  All damping factors 
show similar total improvement here, with larger damping 
factors simply converging more quickly.  The convergence 
rate here is up to one order of magnitude for each iteration. 

 
Figure 14: Maximum relative error for any single cell in 

the “Linear” test data sequence for various convergence 
parameters in the Equi-Z/iterative algorithm. 

Figure 14 shows the results from single-cell 
reconstructions on the Linear data sequence.  These results 
show the maximum error for any linear interface 
intersecting the cell of interest, generally converging to less 
than 1%.  Here we see a penalty for using a damping factor 
that is too large: the 0.9 factor results in oscillations which 
effectively negate the benefits of iteration. 
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4.6 Surface accuracy 
As mentioned, honoring volume fractions is often 

considered the paramount metric in interface reconstruction 
algorithms. However, preserving volume fractions does not 
ensure a good reconstruction from an analysis perspective.  
The role of material interface reconstruction algorithms in 
analysis informs examples: How closely does our material 
approximate a sphere?  How compact is our material?  
Where is its centroid?  What is the moment of inertia? All 
of these are dependent on a correct reconstruction of the 
shape of the object.  The surface area of our reconstructed 
geometry, directly or indirectly, plays a role in the 
calculation for each of these examples, and so we study it 
here to provide a quantitative basis for this metric. 

 
Figure 15: Perimeter of a unit circle material sampled onto 
a grid as reconstructed by each algorithm for a sequence of 
increasing resolutions. The correct answer is 2!. 

We use our “Circle” test again to explore this metric, since 
it has well known properties, and we can examine the 
nature of surface area accuracy while being cognizant of the 
volume fraction accuracy.  Being a unit circle, it has a 
known correct answer for surface area (perimeter in 2D) as 
well: 2!.  Figure 15 shows the surface area measurements 
on this sequence of increasing resolution data sets.  The first 
result, the unmodified PLIC algorithm, is off the chart – this 
is due to the connectivity problem discussed in section 4.2, 
where adjacent cells do not have correct connectivity, 
leading to duplicate geometry and a meaningless 
measurement of surface area.  We applied an algorithm to 
remove the duplicate portions of this geometry, leading to 
values which PLIC could theoretically achieve an in ideal 
case, yet the results are still much higher than the correct 
answer.  This is due to interface mismatches at cell 
boundaries, resulting in a jagged surface where small 
discontinuities add up over the whole perimeter of the 
circle. (Figure 11(a) shows this phenomenon using PLIC on 
this data set.)   Furthermore, the result does not appear to be 
converging to the correct answer at higher resolutions; even 
with a “perfect” choice of interface orientation, more cells 
can simply lead to more wobbles, even if they are smaller.   

The Discrete algorithm has a similar problem; its interface 
is defined by small axis-aligned stair-stepped line segments, 
and thus is at a disadvantage in this metric, generating a 
surface perimeter far too large, also off the chart. 

The other algorithms, due in part to their inherent 
connectivity, perform better.  Our new algorithm, even 
without iteration, shows asymptotic convergence to the 

correct answer, but only the Equi-Z variant.  In contrast, 
Equi-T, by being restricted to triangular primitives, 
introduces small wobbles of its own, though they are less 
pronounced than PLIC.  When iteration is added, our new 
algorithm outperforms all others at every resolution. 

Figure 16 shows this from a different perspective by 
quantifying the surface roughness on this Circle data 
sequence.  We know the sum of the exterior angles of a 
closed polygon is 2!; however, a rougher surface will have 
more negative angles where it is concave.  As the data being 
reconstructed represents a convex shape (i.e. a unit circle), 
we expect no negative angles in a smooth reconstruction.  
By summing the absolute value of these angles, we can 
measure surface roughness as the amount by which this 
summation is greater than 2!.  Note that Equi-Z and 
Isovolume achieve close to or exactly 2!, while Equi-T and 
PLIC are significantly higher (note the logarithmic scale), 
indicating a surface with more jagged and undulating edges. 

 
Figure 16: Sum of absolute value of exterior angles in 
Circle boundary at increasing resolutions.  A convex 
polygon has value 2!; each jagged edge results in a 
negative angle, in turn resulting in an increase in this sum.    

4.7 Memory complexity 
Complex output geometry has consequences, from the 

extra runtime in later analysis, to memory usage both during 
and after reconstruction, to memory imbalances which can 
affect scaling in a parallel setting.  Here we measure this 
output geometry complexity directly. 

 PLIC 
(orig) 

PLIC 
(ideal) Isovol Equi-T Equi-Z Equi-Z/i5 

Polygons 2116 2116 2421 2245 2267 2116 
Lines 592 383 332 429 350 367 
Table 3: Average number of 2D polygons and lines created 
in each domain for material 3 in the 2D ALE3D data set. 

Table 3 shows the amount of geometry created during the 
reconstruction on the 2D ALE3D data set.  We select only 
one material in order to enable fair comparisons with the 
PLIC and Isovolume algorithms, which cannot generate 
good connectivity between materials and would otherwise 
be many times higher.  By using this method we can note 
that the PLIC algorithm does generate a slightly lower 
number of cells due to its use of arbitrary polygons, but the 
number of lines lying along the interface surface is 
generally larger, even after applying a post-processing filter 
to remove duplicate geometry.  The extra subdivision of the 
Equi-T algorithm, due to its restriction to triangular output 
shapes, increases its number of surface lines beyond Equi-
Z, and the Isovolume algorithm is lowest at the cost of 
inaccurate volume fractions in its reconstruction. 
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 PLIC 
(orig) 

PLIC 
(ideal) 

Discrete 
10sec 

Discrete 
60sec 

Isovol Equi-
T 

Equi-
Z 

Equi-
Z/i5 

Cells 13k 13k 1,029k 1,029k 38k 67k 64k 64k 
Faces 75k 65k 373k 265k 20k 44k 22k 23k 
Table 4: Number of volumetric cells and surface faces 
created for material 3 in the 3D Rect3D data set. Note the 
cells for PLIC are complex arbitrary polyhedra. 

Table 4 shows the 3D equivalent of the same information 
for the Rect3D data set, again selecting only one material to 
enable fair comparisons for poor-connectivity algorithms.  
The fixed subdivision in the Discrete approach causes an 
explosion in the number of output cells and surface 
geometry. We see PLIC has a benefit in terms of volumetric 
cells due to its use of arbitrary polyhedra, but this does not 
mean the geometry is strictly simpler; this can seen in the 
number of surface faces being significantly larger than any 
algorithm but Discrete, even with duplicate geometry 
removed.  We see again that Isovolume performs very well 
on this metric, particularly in terms of number of faces.  
Our new algorithm performs nearly as well, though we note 
that the Equi-Z variants, both with and without iteration, are 
improved over Equi-T, as the latter results in extra 
subdivision from its use of only tetrahedral elements.  

4.8 Reconstruction performance 
We test performance using the two largest test data sets: 

the “Rect3D” nested spheres 3D regular grid, and the 2D 
unstructured data set from an ALE3D simulation, both with 
eight total materials.  See Section 4.4 for images and more a 
detailed description of these data sets.  These results were 
generated on a 2.5GHz Intel Harpertown system with 8GB 
RAM and GCC 4.2 with –O2 optimization. 

PLIC Isovol Equi-T Equi-Z Equi-Z/i5 
37.26 ms 67.57 ms 0.73 ms 1.39 ms 18.27 ms 

Table 5: Median reconstruction runtime per domain on the 
2D ALE3D simulation data set.  The Discrete algorithm 
was not tested as it only operates on structured meshes. 

In Table 5 we see the time taken during the reconstruction 
phase on the 2D ALE3D data set for each algorithm 
supporting unstructured grids.  Note that Isovolume is the 
slowest, as it requires multiple passes to support many 
materials.  The variants of our new algorithm are the fastest, 
though we note that the Equi-T version, being restricted to 
triangular shapes, is simpler and faster.  There is additional 
cost associated with each iteration pass, but even with 
iteration the absolute runtime of our algorithm is still a 
significant improvement compared to the alternatives. 

 PLIC Discrete 
10sec Isovol Equi-T Equi-Z Equi-

Z/i5 
Volumetric 
reconstruction 7.31 s 9.95 s 2.08 s 0.16 s 0.13 s 0.93 s 

Surface 
extraction 6.02 s 2.39 s 0.09 s 0.16 s 0.12 s 0.13 s 

Table 6: Runtime on Rect3D for both full 3D 
reconstruction and extraction of surface geometry. 

Table 6 shows the runtime on the Rect3D data set.  Again, 
even with multiple iterations, our new algorithm is the 
fastest for reconstruction.  Note that the tetrahedral 3D 
Equi-T variant is more complex than its triangular 2D 
equivalent, and also generates more cells, so here we see a 

benefit by using the Equi-Z variant.  Also, note that we 
measured the performance for the Discrete algorithm, with 
its dial-an-accuracy approach, at ten seconds, while we 
noted in Figure 10 that even with a sixty second iteration 
time there were still visible artifacts.  The second row in 
Table 6 shows the time to extract the surface geometry. 
This depends on the complexity and number of output cells, 
and so this measure can be indicative of performance for 
other geometric visualization and analysis tasks occurring 
after reconstruction.  For this metric, the large number of 
cells in the Discrete algorithm and the complexity of the 
arbitrary polyhedra generated in the PLIC algorithm are 
major reasons for their reduced performance. Though the 
Isovolume approach is faster in this extraction phase, Equi-
T and Equi-Z are close behind. The combined 
reconstruction time is thus significantly faster in our 
proposed algorithm. 
5 Conclusions and Future Work 

In this paper, we present a new approach to material 
interface reconstruction which improves upon existing 
methods in several ways.  First and foremost, it has correct 
connectivity and supports multiple materials – features 
which are critical for analysis and visualization.  While 
making no guarantees for reconstructed accuracy in volume 
fraction, we have described an iteration technique which 
largely addresses this problem.  Additionally, we contend 
that volume accuracy is only one of several accuracy 
metrics critical for analysis; when measuring surface area, 
for instance, other algorithms have severe accuracy 
weaknesses in comparison with our technique.  And finally, 
our method has good performance on real data sets while 
exhibiting good subjective realism and aesthetically 
pleasing reconstructions due to its inherent smoothness and 
material placement.  Combined, this evaluation shows that 
our approach to material interface reconstruction strikes a 
favorable balance in the visualization and analysis-space. 

We expect future work to focus on improvements to the 
iteration scheme, such as material ordering, damping 
factors, and potentially even local iteration modifications 
which can provide accuracy guarantees.  In addition, we 
expect to more fully study the scalability on large data sets. 
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